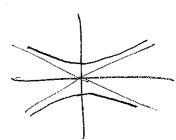
Find the <u>rectangular</u> equation of the hyperbola with foci $(0, \pm 2)$ and asymptotes $y = \pm \frac{3}{4}x$.

SCORE: / 20 PTS



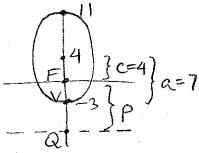
$$\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$$

$$\frac{y^{2}}{\frac{36}{25}} - \frac{x^{2}}{\frac{64}{25}} = 1$$

$$\frac{25y^2 - 25x^2 - 1}{64} = 1$$

Find the <u>polar</u> equation of the ellipse with vertices with <u>polar</u> co-ordinates $(11, \frac{\pi}{2})$ and $(3, \frac{3\pi}{2})$,

and a focus at the pole.



CENTER =
$$(0, \frac{11-3}{2})$$

$$e = \sqrt{k} = \frac{3}{p-3} = \frac{4}{1}$$

 $21 = 4p+2$

$$P = \frac{33}{4}$$

$$11 = \frac{eP}{1 - e \sin \Xi} \rightarrow 11 = \frac{eP}{1 - e}$$

$$3 = \frac{eP}{1 - e \sin \Xi} \rightarrow 3 = \frac{eP}{1 - e \sin \Xi}$$

SCORE: ____ / 20 PTS

$$r = \frac{4 \cdot 3}{1 - 4 \sin \theta} = \frac{33}{7 - 4 \sin \theta}$$

Find the zeros of the polar equation $r = 1 + 2\sin 2\theta$ for $\theta \in [0, 2\pi)$.

SCORE: ___ / 15 PTS

NOTE: You must solve this problem algebraically, NOT BY TRIAL & ERROR.

$$0 = |+2 \sin 2\theta|$$

$$\sin 2\theta = -\frac{1}{2}$$

$$2\theta = \frac{17}{6}, \frac{17}{6}, \frac{197}{12}, \frac{237}{12}$$

$$\theta = \frac{17}{12}, \frac{17}{12}, \frac{17}{12}, \frac{237}{12}$$

$$0 \le 20 < 2\pi$$
 $0 \le 20 < 4\pi$

Convert the polar equation $r = 3 + \cos 2\theta$ to rectangular.

$$r = 3 + \cos^{2}\Theta - \sin^{2}\Theta$$

$$r = 3 + \frac{x^{2}}{r^{2}} - \frac{y^{2}}{r^{2}}$$

$$r^{3} = 3r^{2} + x^{2} - y^{2}$$

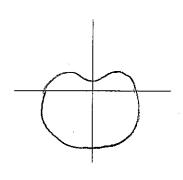
$$(x^{2} + y^{2})^{\frac{3}{2}} = 3x^{2} + 3y^{2} + x^{2} - y^{2}$$

$$(x^{2} + y^{2})^{\frac{3}{2}} = 4x^{2} + 2y^{2}$$

$$(x^{2} + y^{2})^{3} = (4x^{2} + 2y^{2})^{2}$$

SCORE: _____ / 15 PTS

Sketch the general shape, position and direction of the polar curve $r = 7 - 4\sin\theta$ on the axes on the right. SCORE: _____ / 12 PTS NOTE: You do NOT need to find specific points. However, if the curve passes through the pole, it must be shown on the graph.



12/4/2 -> LIMAGON WITH DIMPLE

SYMMETRIC OVER Y-AXIS

LARGER SIDE DOWN

The following symmetry tests all fail: $(-r, \theta)$, $(-r, -\theta)$ and $(-r, \pi - \theta)$

[a] Run the other standard tests for symmetry for the polar equation, and summarize all conclusions in the table below.

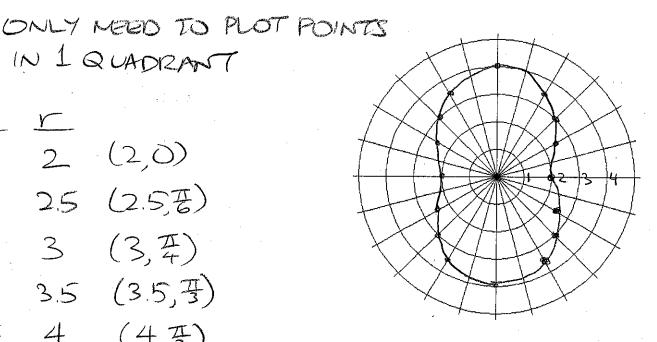
Type of symmetry	Conclusion
Over the pole	SYMMETRIC
Over the polar axis	SYMMETRIC
Over $\theta = \frac{\pi}{2}$	SYMMETRIC

$$(r, \pi - \theta)$$
: $r = 3 - \cos 2(\pi - \theta)$
 $r = 3 - \cos (2\pi - 2\theta)$
 $r = 3 - [\cos 2\pi \cos 2\theta + \sin 2\pi \sin 2\theta]$
 $r = 3 - \cos 2\theta$
SYMMETRIC OVER $\Theta = \overline{4}$

AUTOMATICALLY SYMMETRIC OVER POLE

[b] Draw the graph of this polar equation by plotting points for as few θ -values as needed, and using symmetry to complete the graph. List the polar co-ordinates (in ordered pair notation) of all points you needed to plot.

IN I QUADRANT 0 2 (20)至 25 (2.5) (2.5) (2.5) (2.5) 五 3 (3, 平) 4 35 (35.3) 至 4 (4至)



[a] Find the co-ordinates of the vertex/vertices

$$9x^{2}+72x+4y^{2}-8y=-4$$
 $9(x^{2}+8x)+4(y^{2}-2y)=-4$
 $9(x^{2}+8x+16)+4(y^{2}-2y+1)=-4+144+4$
 $9(x+4)^{2}+4(y-1)^{2}=144$
 $(x+4)^{2}+(y-1)^{2}=1$
 $(x+4)^{2}+(y-1)^{2}+(y-1)^{2}=1$
 $(x+4)^{2}+(y-1)^{$

[b]

[d]

[f]

[b] Find the co-ordinates of the focus/foci.

$$c^2 = 36 - 16 = 20$$

 $c = 2\sqrt{5}$

Name the shapes of the following graphs.

SCORE: _____ / 21 PTS

[a] the graph with polar equation
$$r = -5 + 2\cos\theta$$

the graph with equation
$$8 + 4x + 2x^2 + 18y + 3y^2 = 0$$

the graph with polar equation $\theta = 2$ [c]

the graph with polar equation
$$r = \frac{15}{7 - 5\cos\theta}$$

1-10/

[e] the graph with polar equation $r = -7 - 7\cos\theta$

the graph with equation
$$2 + 2x + 3x^2 + 18y = 0$$

the locus of points in the plane that are one-sixth as far from (4, 1) as they are from x = 7[g]